relation function; and (3) finally calculate the inverse Fourier
transform of the modulus squared of the Fourier transform,
perhaps using an inverse fast Fourier transform algorithm.
The result is the autocorrelation function of the noise, but
this method is much faster than the direct calculation of the
autocorrelation function described previously. Students will
be impressed by the speed of this important numerical tech-
nique.

V. CONCLUSION

The experiment described here creates an opportunity for
students to employ important concepts from electrical cir-
cuits and Fourier analysis, while gaining experience with
digital electronics and modern computer-aided data acquisi-
tion. Although only one experiment is described, there are
many possibilities as soon as a noise generator is connected
to a data acquisition computer. Besides the noise experiments
suggested in Sec. I, simple Fourier analysis of the noise,
perhaps employing the FFT algorithm, would be a very illus-
trative exercise. Once this capacity is present, the introduc-
tion of filters would allow for further exploration of basic
electric circuitry. At this point the computer would be func-
tioning as a spectrum analyzer, which may not make sense if

a spectrum analyzer is available. Still, one of the advantages
in all of these experiments is that the student does all of the
programming without devoting a large amount of valuable
laboratory time to programming.

)Present Address: Department of Electrical Engineering, Princeton Univer-
sity, Princeton, New Jersey 08544.
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About 1930, physicists were increasingly frustrated about the infinities of quantum electrodynamics
and the strange behavior of what were believed to be nuclear electrons. As a way out of the problems
Heisenberg suggested that space be subdivided in cells of finite size, and indicated in a letter to Bohr
the essence of his theory. In Heisenberg’s lattice world, the electron could metamorphose into a
proton, and the atomic nucleus consisted of protons and heavy “photons.” We analyze Heisenberg’s
fascinating (but unpublished) theory in its historical context, and suggest a detailed reconstruction
of the lattice world idea contained in the letter to Bohr. © 1995 American Association of Physics

Teachers.
L. INTRODUCTION

In a paper appearing in the fail of 1930, dealing with the
infinite self-energy of the electron, Werner Heisenberg in-
cluded the following remark’

[It would seem] plausible to introduce the radius r, [of the

electron] in such a way that space is divided into cells of

finite magnitude r3, and the previous differential equations
are replaced with difference equations. In such a lattice
world the self-energy will, at any rate, be finite. However,
although such a lattice world possesses remarkable prop-
erties, one must also observe that it leads to deviations
from the present theory which do not seem plausible from
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the point of view of experiment. In particular, the assump-

tion that a minimal length exists is not relativistically in-

variant, and one can see no way to bring the demand for
relativistic invariance into conformity with the introduc-
tion of a fundamental length,

Most readers of the issue of Zeitschrift fir Physik probably
found this comment rather cryptic, for Heisenberg did not
give the slightest hint of either its context or how he had
derived the results of a cellular space. What he had in mind
was, in fact, a theory sketch which he had worked out earlier
in the year and communicated to Bohr in a private letter. In
the letter, Heisenberg suggested that the world is structured
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as a lattice—that it is a Gitterwelt. He believed that he could
in this way solve some of the frustrating problems of quan-
tum electrodynamics and also produce a theory based on
only one kind of elementary particle. In this sense, Heisen-
berg’s theory aspired to the same high goals as the hole
theory suggested by Paul Dirac at the same time. (Although
Heisenberg’s work, given its unfinished and tentative formu-
lation, should properly be referred to as a theory sketch, or
an idea, for linguistic reasons we will refer to it also as a
“theory.”)

Furthermore, Heisenberg’s lattice world also promised to
cast new light on the structure of the atomic nucleus and to
get rid of the electrons that were supposed to reside in the
nucleus but which were unwelcome because of their strange
behavior. Altogether, the theory would have heralded a revo-
lution in physics, had it worked. It did not.

The radical idea was met with skepticism from Bohr and
others, and after one or two months Heisenberg decided to
bury it. For this reason the theory remained unpublished, and
it has only survived in the form of the mentioned letter to
Bohr. In spite of its brief life the theory was rather widely
discussed among insiders in the physics community, and
some of its basic ideas were later revived by Heisenberg. The
unpublished sketch of 1930 was an ingenious and original
attempt to revolutionize microphysics, with elements that are
highly interesting both from a historical and a physical point
of view. Among these are the impact of ideas from solid state
physics, undoubtedly the first case of transfer of methods
from solid state to elementary particle physics.

The present paper locates Heisenberg’s theory of 1930 in
its proper historical context, including not only quantum
electrodynamics and solid state theory but also nuclear phys-
ics and the more speculative theories of a discrete space-time
structure that existed in the late 1920s. The core of the paper
consists of a translation of Heisenberg’s letter and a detailed
reconstruction of its meaning in terms of physical theory
known at the time. By means of this reconstruction we be-
lieve we have explained, in a technical sense, Heisenberg’s
theory of a lattice world. As all reconstruction, our attempt is
in part based on rationalization and some guesswork, which
in this case is unavoidable because of the absence of supple-
mentary source material: Together with most other sources,
Heisenberg’s calculations and notes concerning the lattice
world disappeared when his institute in Leipzig was raided
during the war.

II. QUANTUM THEORY AND DISCRETE SPACE
TIME

In 1929, Heisenberg and Wolfgang Pauli had developed an
elaborate, relativistically invariant theory of quantum elec-
trodynamics that was to become the foundation of the field
for the next decade.®> However, it almost immediately turned
out that in this theory the calculation of some quantities also
gave an infinite result. Later, at the end of 1929, Heisenberg,
Pauli, Oppenheimer, and a few others realized that the self-
energy of the point-like electron remained infinite (as in clas-
sical electrodynamics) and that the new quantum electrody-
namics was therefore in trouble. The question of infinities in
quantum electrodynamics deeply concerned Heisenberg who
was constantly looking for methods to improve the theory.

One possible way to avoid (some of) the infinities was to
postulate a smallest length and also, perhaps, a smallest time
interval. Closely related to this idea were various attempts of
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Fig. 1. Heisenberg'’s sketch of the variation of the energy of an electron with
the “quantum number” ka, as included in his letter to Bohr of March 10,
1930.

the late 1920s to introduce a discrete space time, i.e., to
conceive space and time as consisting of smallest finite units.
Such reasoning was followed by several physicists who, on a
more or less speculative basis, suggested the existence of
time atoms or “chronons.” For example, in a highly specu-
lative paper of 1929, Gottfried Beck, a Swiss amateur physi-
cist, suggested that all particles were intermittently moving
with the speed of light, traversing one space atom per time
atom.* A related idea, first suggested by Henry Flint and
Arthur Ruark in 1928, was to conceive of the uncertamty in
the position of a particle as having an absolute mlmmum
value, independent of the uncertainty of the momentum.® For
electrons, the value was taken to be h/mc, and, in the case of
protons, A/Mc, with m and M denoting the respective
masses. About 1930, the idea of absolute uncertainties was
widely discussed, often in the form of #/M ¢ being a kind of
minimum length below which quantum mechanics would
cease to apply. In one version or another, the hypothesis was
accepted by leading quantum physicists such as Bohr, Pauli,
Schrodinger, Heisenberg, de Broglie, and Jordan.

Neither Beck, Ruark, nor Flint were concerned with quan-
tum electrodynamics, but in the summer of 1930 the two
young Soviet physicists Dmitri Iwanenko and Victor Ambar-
zumian transferred the idea into quantum theory. They con-
ceived space as a three-dimensional, cubic lattice in which
case the ordinary differential equations of quantum mechan-
ics had to be replaced by difference equations. However, the
plan was not developed very far. Considering the
Heisenberg—Pauli expression for the Coulomb self-energy,
they simply replaced the Green function of the Laplace op-
erator by that of the corresponding finite difference operator
and in this way obtained a finite value of the electron’s self-
energy. They also mferred the existence of a minimum time
interval Ar=Ax/c~e?/mc>. The inverse of this time atom
would be a maximum frequency, which Iwanenko and Am-
barzumian assumed would correspond to the hypothetical
proton—electron annihilation process p* +e~—2hv. There-
fore

(M+m)c?/2h~mc>/e?

so that m/M and the reduced fine structure constant e*/hc
are of the same orders of magnitude, in agreement with ex-
perience.

In a note added in proof, the two Soviet physicists wrote:
“Heisenberg has attempted an analogous quantization [of
space]. He has succeeded in integrating the difference wave
equation of the free electron. In this way he obtained the

B. Carazza and H. Kragh 596



Fig. 2. Heisenberg’s drawing of the variation of the energy of a neutral,
massless particle (“photon”) with the quantity ka. The axes are the same as
in Fig. 1.

most remarkable result of maximum eigenvalues.”® But, as
mentioned, although Heisenberg communicated his work to
Ambarzumian and Iwanenko, among others, it never reached
the pages of Zeitschrift fur Physik or any other journal.

III. A COMPLETELY MAD IDEA?

Heisenberg’s idea of considering space cells of finite size
was clearly introduced in order to solve fundamental prob-
lems in quantum electrodynamics. It may have been inspired
by some of the earlier speculations about discrete space time,
such as Beck’s, and possibly also by Dirac’s unitary theory
of protons as the absence of negative energy electrons.” The
terminology and notation used by Heisenberg in his letter
may suggest that he considered space as a discrete manifold
with the wave functions defined only on the points of a spa-
tial lattice. However, as far as we have understood the theory
sketch, this is not the correct interpretation. In effect, Heisen-
berg considered continuous position coordinates and wave
functions defined on a continuous manifold: it is only the
derivatives in space coordinates that are replaced by finite
differences by the introduction of an elementary length.
Therefore, Heisenberg’s use of the term “lattice world” is
unfortunate since it does not reflect the true meaning of the
theory.

Heisenberg first reported about his idea in a letter to Bohr
of February 26, 1930: “I now believe that in the electrody-
namics of Pauli and myself the self-energy of the particles,
and also the Dirac transitions, spoil everything. I have lately
tried, as earlier with the phase space, to divide the real space
in discrete cells of magnitude (4/Mc)*(M =mass of proton)
and in this way to obtain a reasonable—but not, of course, a
quantitatively useful—theory in the sense of correspondence
considerations.”® His idea was to utilize “the freedom which
is given by the uncertainty of /M c for all lengths”—a ref-
erence to the idea of absolute uncertainty. How to utilize the
freedom was reported two weeks later, in another letter to
Bohr.’ The main part of this letter, the key document for
understanding Heisenberg’s early lattice world, is translated
below.

As you know, the self-energy of the electron causes the

most terrible things in Pauli’s and my electrodynamics; in

particular one also gets here contributions to the self-
energy which have to do with the Dirac transitions, and
therefore a complete confusion. Since now, on the other
hand, a length can presumably not be determined more
precisely than h/Mc (M is the proton mass), then there

597 Am. J. Phys., Vol. 63, No. 7, July 1995

seems to me to be a freedom here which perhaps can be
used to remove the difficulty with the self-energy. The
most primitive method to account for this uncertainty
h/Mc in a correspondence-like way, so to speak, seems to
me to be a division of space into cells of the magnitude
(h/Mc)>. So, 1 have asked myself what such a lattice
world looks like. For this purpose I initially calculate one-
dimensional froblems Instead of the Gordon—Klein equa-
tion Cl¢p+m*c* =0, something like

~(Elc)*+(h/2mia) [Upsy— 2up+tt,_ ]+ m>c?u,=0

(1]

would then appear, with a being the cell radius. (Here, the
time is initially treated just as usually.) If the energy is
pictured as a function of the quantum number, one obtains
the following curve (Fig. 1). In the neighborhood of the
minima (E/c~mc), the electron thus behaves quite nor-
mally. On the other hand, near the maxima (in continuous
space there are no maxima) it behaves like a proton. This
is seen as follows: First, the curvature of the curve corre-
sponds to the mass h/2mac~M, which follows from Eq.
[1] (i.e., identical with M for an appropriate choice of a);
next, the curvature is negative, i.e., the electron responds
to external forces like a positive charge (cp. with Peierls’
work on the anomalous Hall effect). Finally, it also acts
field-producing like a proton; with a reasonable choice of
the Lagrangian function, —e(uu, .+ u;, u,) enters as
a charge density [and] in the neighborhood of the maxi-
mum [we have] just that u,,;~—u,. | have calculated
these properties more exactlg I further believe that the
mass term of the electron mc” in Eq. [1] can be dispensed
with. The self-energy provides the electron with a mass,
and, to be more exact the order of magnitude of this en-
ergy is e*/a; i.e., e2Mc*/hc. In such a lattice world the
mass term can thus most probably, be cancelled, and the
electron’ s mass will be given by theory; in that way,
m/M~e*/hc. Of course, it would make no sense to cal-
culate the numerical coefficient.

Among the further consequences of the lattice world is
the following: The curve of the energy as a function of the
quantum number looks like (Fig. 2) also for light quanta.
That is, the group velocity disappears in the vicinity of the
maximum A~h/Mc. The velocity of light must thus be a
function of the frequency, the deviations from ¢ being of
the order of (hv/Mc*). Also the charge of the electron
would be a function of the velocity, where the deviations
also in this case would be of the order of (hv/Mc?)>.

If the lattice world is extended to three dimensions, it
appears that it becomes difficult to make space really iso-
tropic. Also there is no decent Lorentz invariance. Further-
more, energy and momentum conservation are not valid in
such a lattice world (i.e., only modulo 24 with respect to
the quantum number; cp. with Peierls’ lattice works). Nei-
ther is there any charge conservation. That is, all the laws
are approximately valid in the ordinary atomic physics,
but they break down in nuclear physics. Another interest-
ing result is this: The atomic nuclei consist only of protons
and (slow) light quanta of mass M, not of electrons. For in
order to build up wave packets of nuclear dimensions,
only waves close to the maximum of the E curves can be
used.

I do not know if you find this radical attempt com-
pletely mad. But I have the feeling that nuclear physics is
not to be had much more cheaply. Of course I do not take

B. Carazza and H. Kragh 597



this particular lattice model very seriously: It is only
meant as a help in seeing what the qualitative effects are
of introducing a universal length. As I wrote, I believe
these qualitative results to be open for discussion, and I
would not be surprised if something of this kind was
found experimentally.
This was as much as Heisenberg wrote to Bohr. In spite of
the length of the letter, Heisenberg’s reasoning is not clear at
all, and certainly not immediately. In particular, how did he
obtain the results reported with such confidence? How reli-
able are they (and were they)? In order to settle these
questions—and to settle our own curiosity—we offer an in-
terpretation of Heisenberg’s approach.

IV. RECONSTRUCTION OF HEISENBERG’S
APPROACH

A. Energy spectrum

In order to derive the results reported qualitatively by
Heisenberg, we start with the Klein—Gordon equation for a
free electron, as written by Heisenberg, namely,

O¢+m2c2p=0, (1)

where m denotes the rest mass. Heisenberg knew of course
that this equation does not describe real electrons, but in
order to avoid complications with spin at this first stage of
his research program he chose to consider spinless electrons
instead of using the Dirac equation. In the one-dimensional
case considered by Heisenberg the d’Alembert operator L] is
#*(c ™23 ot — #/ox?) which gives

123 Pl ox>—c 20>/ ot?) =m>c? . )
Since time is treated ““‘as usually,” we write
d(x,t)=u(x)f(t)=u(x)exp(—iEt/h)
and obtain
h25*u)ox*— (E/c)*u=m>c’u. 3)

Now the question of discreteness enters. We first remark that
Heisenberg only considers discreteness in space and that he
treats time as usually, i.e., as a continuous parameter. His use
of the work “initially”” (zundchst) may indicate that he was
considering, in a further development of the theory, to also
introduce discreteness in the time variable, but this is not
done in the letter. However, as we shall see in Sec. IVD,
there are reasons to believe that Heisenberg did also consider
time operators to be discrete.

With regard to the space function u(x) it is not very clear
whether Heisenberg defines it only on the points of a lattice,
i.e., only for x=0, *a,*2a, etc., or if he considers u(x) for
all continuous values of x and thus introduces the elementary
length only by means of a discrete operator replacing the
differential operator. We have adopted the second possibility
which makes better sense in a solid state theoretical context
and which also agrees better with Heisenberg’s later theory
of a smallest length.

In that case, we define x as a continuous parameter, x=§
+na with n=0, 1, %£2,... and 0<¢<a. The variable
u(x) is then replaced by u,(x)=u(é+na). In order to ex-
plore the space-lattice world, Heisenberg makes use of a
second-order difference quotient as a substitute for the dif-
ferential quotient §%/x2, namely

A%u(é+na)={ul£+(n+1)al—2u(£+na)
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+ulé+(n—1)al}/a’. 4)

With this substitution, Eq. (3) just becomes Eq. [1] in
Heisenberg’s letter. We now have to solve the equation, for
which purpose we write

u,(x)=explik(é+na)], (5)

where k is the wave number, k=2m/A=p/#. The result of the
substitution is that Eq. [1] yields

—(h/a)[e** —2+e" *Nu, +m?c?u,=(E/c)*u,. (6)

Euler’s formula then gives the energy as a function of &k and
the length a:

(E/c) =m2c*+2(h/a)*(1—cos ka). ¥

As in the case of the ordinary Klein—Gordon equation, the
energy of the free electron can attain both positive and nega-
tive values. Heisenberg considers only the positive root

E=[m?c*+2(fc/a)*(1—cos ka)]"/2. (8)

For a free particle described by the ordinary Schrodinger
equation in one dimension the plane waves with the same
absolute value of the momentum, but moving in opposite
directions, have the same energy. From Eq. (8) it follows that
the energy is an even function of the wave number, so in the
lattice world we also have the same energy for k.

A characteristic feature of the present case is that the en-
ergy eigenvalues are further degenerate. In fact, since they
are given by a periodic function of the quantity ka we have

E(k)=E(k+n2w/a), 9)

where n=0, =1, =2, etc. All the values attained by the
energy are those corresponding to the first Brillouin zone
— w/as<k=<m/a. As a consequence of the degeneracy a so-
lution corresponding to the energy eigenvalue E(%) can in
general be written as a linear superposition of waves of the
kind

exp(ikx)E ¢, explin2mx/a),

where the coefficients ¢, are undetermined. In general,
u(x)=exp(ikx)w(x),

where w(x)=w(x+a) is any periodic function with period
a. This is just the form of the Bloch solution for an electron
in a periodic potential, introduced by Felix Bloch in his
seminal thesis work of 1928 done with Heisenberg as his
supervisor.® The product 7k of Planck’s constant and what
Heisenberg calls the “quantum number” (the wave number)
thus corresponds to the quasi (or crystal, or lattice) momen-
tum known from solid state physics. The analogy is not sur-
prising since the Hamiltonian for an electron in a periodic
potential and the finite difference operator introduced by
Heisenberg have the same symmetry properties, i.e., both are
invariant under a finite translation. However, in the solid
state case the periodic factor w(x) is known since the energy
eigenstates are well defined. In the present case the form of
w(x) cannot be further specified.
The values of E, as found above, oscillate between

E=mc?> (for k=0*n2m/a) (10)
and

E=[m?c*+(#ic/a)*]"* (for k=m/axn2m/a) (11)
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in agreement with the curve sketched by Heisenberg. As he
notes, this contrasts with the usual (“continuous™) case
where the energy just grows indefinitely with the wave num-
ber k.

B. Electrons and protons

Let us first consider Heisenberg’s statement that, near the
minimum, “the electron behaves quite normally.” This can
be seen by expanding the cosine in Eq. (8). Takmg2 only the
two first terms into account, i.e., cos ka=1—(k/a)“/2, gives
for the energy near k=0 the expresswn

E=[m3c*+(hkc)*]V2. (12)

With the momentum p=*#k it thus coincides with the ordi-
nary relativistic expression. Let us next consider a superpo-
sition of plane waves with wave vectors concentrated in a
small region around &, and introduce the group velocity of
the wave packet,

v,=dw(k)/dk=1""13E(k)/ok. (13)

With the expression (12) we obtain, again near k=0, the
result

=hk/m (14)

in agreement with the ordinary case.

The behavior near the maxima—with the electron turning
into a proton—is more remarkable and not so easily under-
stood. However, we can understand Heisenberg’s remarks by
making use of the concept of the effective mass. We first
recall that according to Ehrenfest’s theorem the average
value of the acceleration of a quantum particle of mass u
subjected to a constant external force X obeys the relation

(d®x/dt*)=X/u (15)

in analogy with Newton’s law of motion. From solid state
physics, when considering the electrons filling the Fermi
band, it is well known that the electron characterized by a
wave packet centered around k behaves like a quasiparticle
of effective mass u* given by

1/pu*=h"2%E(k)/ok>. (16)

The average acceleration of an electron moving under the
action of a constant electncal field F directed along the x
axis is therefore (d*x/dt*>)=—eF/u*. Insertion of E from
Eq. (8) gives

1/u*=c? cos(ka)Q 12~ (#ic¥/a)? sin*(ka)Q 32
17
with the abbreviation
Qk)=[m2c*+ (282c*/a*)(1—cos ka)].

For k= m/a the electron mass term mc? can be dlsregarded
since, with Heisenberg’s choice of a, fic/a>mc?. The result
is a negative effective mass:

pu*=-2h/ac. (18)

The equation of motion of an electron for which k~ 7/a is
thus
(d*x/dt?*)=(eac/2h)F, (19)

i.e., the electron reacts like a particle (on an empirical point
of view, is a particle) with a positive charge e and a mass
equal to 2fi/fac~M. According to Heisenberg, the ordinary
electron is described by the behavior of the wave function
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around k=0 and as k increases (modulo 27/a) it becomes a
proton at rest. Evidently, Heisenberg interpreted the negative
sign of the effective mass as a positive electrical charge and
not as a negative mass.

As Heisenberg remarks, the self-energy of the electron
will be of the order of magnitude e/a, the classical expres-
sion for an extended electron. With a=h/Mc this corre-
sponds to a mass (self-mass) of Me?/hc so that the electron-
to-proton mass ratio should be of about the same order of
magnitude as the reduced fine structure constant. The order-
of-magnitude equality between the dimensionless quantmes
M/m (ca. 1840) and hc/e? (ca. 860) was often seen as sig-
nificant at the time. As mentioned, the same agreement was
pointed out by Ambarzumian and Iwanenko in their sketch of
a lattice world from the summer of 1930.

We now consider Heisenberg’s remarks concerning the
charge density and its variation with the velocity. With the
charge density proposed by Heisenberg,

p=—e(uluy s+l u) (20)

the charge will change sign around k= /a. This is evident
from the fact that u,= —u, , | exactly at k= m/a, which fol-
lows from u, . ,(x)=u,(x+a) and expression (5). So for
this value of the wave number the electron acts as a posi-
tively charged source. In the 1930s the standard way of ex-
pressing the coupling between, e.g., a Coulomb field and a
charged particle was through a term of the Lagrangian den-
sity of the form

qo(r)(r)y*(r),

where g is the charge of the particle, ¢(r) is the Coulomb
field operator, and y{r) is the wave function of the particle.
Since ¥(r)y*(r) is the probability density of the particle, the
charge density is just the product of the charge and the prob-
ability density, that is, qy(r)¥*(r). We can transcribe
Heisenberg’s proposal for the linear charge density to

p=—ely*()Y(x+a)+y*(x+a)P(x)]. (21)

For a—0, where the ordinary description is regained, we get
p==2ed(x)y*(x).

For reasons of correspondence with the continuous case this
means that Heisenberg’s expression (2) has to be divided by
a factor 2. The wave function entering in the charge density
also has to be normalized. Let us, as an example, consider a
finite part of the x axis from —L to +L and use the wave
function

u(x)=(2L)~ 2 exp(ikx).

Then, by inserting into Eq. (20) and taking the factor 1/2 into
account, we get

p=(—e/2L)cos ka. (22)

We notice that the distribution of charge does not depend on
the value of x. Since a plane wave has no preferred localiza-
tion in space, this is what we would expect from the ordinary
case.

According to Heisenberg, the electrical charge is not con-
stant in the discrete case. To see this, we expand p from Eq.
(22) around k=0:

p=—e(1-k%a?2+---)/2L. (23)
We saw previously [Eq. (14)] that to the same order the
velocity is given by #ik/m, which implies that the charge of
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the electron is a function of the velocity. The absolute value
of the electronic charge is e for v=0 and decreases with
velocity. With £=hv, where v is the frequency, Eq. (12) can
be written

(hk)*=(hv/c)?>~m>c>.

If k from this relationship is inserted into Eq. (23), we obtain
the charge density as a function of the frequency:

p(v)=—e(m*/2L){1— (hv/Mc®)*+ (m/M)?*+---}.
(24)

This justifies Heisenberg’s remark that the (relative) devia-
tion from the ordinary case—where p is independent of v—is
of the order (hv/Mc?)%

A charge density of the form (20) or (21) indicates, if only
implicitly, the germinal idea behind the class of so-called
nonlocal field theories. The basic idea of such theories is (or
was) that elementary particles cannot be exactly localized in
some space point at a given instant of time. By considering
the particle as being “smeared out” over a finite region of
the space time continuum, some theoreticians of the 1930s—
including Gleb Wataghin, Fred Hoyle, and Moisei Markov—
attempted to build up nondivergent field theories.!! The non-
local field approach, which attracted considerable attention
in the early 1950s, is evidently related to the ideas of a pos-
sible discreteness of space time or, alternatively, to the idea
of an intrinsic limitation in the precision of determining
space and time coordinates of a particle. In Heisenberg’s
one-dimensional example we see the nonlocal field philoso-
phy in embryo. The expression of the charge density, or the
corresponding Lagrangian, shows that the particle~field in-
teraction at some point x is not only determined by (x), but
also by y{x+ a). This is, essentially, the nonlocal field idea,
and as such it will not be too far-fetched to announce Heisen-
berg’s unpublished theory as perhaps the first (and possibly
unconscious) germ of the idea.

C. Heavy photons

In order to understand Heisenberg’s remarks about light
quanta (photons) we consider again Eq. (8), this time with
m=0. In the discrete world, the energy of photons is given
by

E,=(fc/a)[2(1~cos ka)]'/? (25)

and for k~0 we have the usual result E, =fkc=pc, or
w=kc. The energy curve is sketched in Fig. 2.

Another surprising result arises for photons when k~ 7/a.
If we apply expression (13) for the group velocity using the
dispersion law as given by Eq. (25), we get

vg=c sin(ka)[2(1—cos ka)] V2. (26)
For k~0 the result is v ~c, but when k=m/a, or
A=2a~h/Mc, we have that v g~0, in strong contrast with
the behavior of ordinary photons.

A series expansion around k=0 further illuminates
Heisenberg’s remarks. From Eq. (26) we have

ve=c[1-k%a?/31+:--].
With k=2#nv/c and a=h/Mc the expression becomes
ve=c{1—(4m%/31)(hv/Mc*)*+---}. (27)

We see that “the velocity of light must thus be a function of
the frequency, the (relative) deviations from ¢ being of the
order (hv/Mc?)?,” as Heisenberg claims. For small values of
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k light behaves in the usual way, but as & increases (modulo
27/a) the velocity of light becomes slower and slower. At
k=1r/a the velocity is exactly zero. In this case we get for
the (rest) energy

E,=2hc/a =Mc?

i.e., the photon behaves as it has gained protonic mass. In
this respect the photon only differs insignificantly from the
electron, cf. Eq. (18). What distinguishes the solution for
photons near k= 7r/a is that it evidently refers to something
electrically neutral. For this reason Heisenberg speaks of
“(slow) light quanta of mass M.” Actually, these “photons”
were merely introduced (for £=0) as massless solutions to
the discrete Klein—Gordon equation, and, apart from being
neutral, they have little in common with ordinary photons. In
1930, the photon was the only known neutral elementary
particle, with or without mass, and so it was natural for
Heisenberg to refer to the hypothetical neutral particles ap-
pearing in his lattice world as light quanta. He might also
have called them neutrons, but this name was already used
by Rutherford and others for hypothetical composites of pro-
tons and electrons. We shall return to the possible connection
between heavy quanta and neutrons in Sec. VIL

D. Nonconservation in one dimension

According to Heisenberg, neither momentum, energy, nor
charge is conserved in the lattice world where Lorentz in-
variance is also violated. In fact these unpleasant features are
not peculiar to the three-dimensional lattice world but are
also properties of the one-dimensional case considered by
Heisenberg. Let us point out that his claim for nonconserva-
tion of momentum and energy is to be understood only
within the circumstances we shall discuss.

The lack of (“decent’) Lorentz invariance is obvious from
the fact that only space is discretized, whereas time is not. As
a minimum requirement for a relativistic theory, space and
time must be treated on the same footing. Also, as pointed
out by both Bohr and Ehrenfest (see Sec. VI), Heisenberg’s
fundamental length a is not relativistically invariant; as all
lengths, it is subject to the Fitzgerald—-Lorentz contraction.
We have already seen that the electrical charge varies with
the velocity and so cannot be a conserved quantity.

Nonconservation of momentum—really of quasi-
momentum—follows from the close analogy with Peierls’
theory of metal lattices in which the quasimomentum is not
conserved (see Sec. VI). Whereas momentum nonconserva-
tion follows nicely from the solid state analogy, energy non-
conservation does not. Heisenberg’s statement can only be
understood if we assume that he considered to also replace
the time derivative by a finite difference. In that case the
separated time part of the Klein—Gordon equation,

— K22 f(1)/ 9> =E>f(1), (28)
must be replaced by
— R f(e+7)=2f() +f(t— 1))/ =E*f(1), 29

where 7 is a smallest time interval. By proceeding in com-
plete analogy with the space case, i.e., writing

F()=f(@+n7)=explin(@®+n7)],
the energy eigenvalues
E==*(#/7)[2(1—-cos wT)]'? (30)
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are found. The energy is thus continuous and periodic in w,
and only in the limit w—0 will its absolute value be the
familiar fiw. This quantity, fiw, corresponds to the quasimo-
mentum 7k and is thus a quasienergy. Since  is a multival-
ued function of E, even if the energy is exactly known the
temporal behavior of the wave function is still undetermined.
A general solution for the time dependence of a state with a
definite energy corresponding to the frequency w can be
written

f(y=g()exp(int),

where g(t)=g(t+T) is periodic in time with the period T.
Now consider a time-dependent sinusoidal perturbation of
frequency ), so that the interaction term is proportional to
exp(iw,t). For simplicity, let us refer to the first order time-
dependent perturbation theory. According to it, when the
time dependence of the initial and final states are given by
the monochromatic waves ¢;=exp(iw;?) and ¢,;=exp(iwt),
the transition probability from state i to f is zero unless
wy=w;tw,. But if we consider the general solutions
g(Hexp(iwt) instead of pure waves, then transitions for
which

wi=w;+w,+7n, where p=n2n/T

with n=0,*1,%2,... (31)

are also possible. Our considerations are analogous to
Peierls’ discussion of nonconservation of quasimomentum,
and we assume that Heisenberg just followed the analogy
when speaking of energy nonconservation. We further ob-
serve that not only is the quasienergy #iw not conserved, but
neither is the energy E. For example, if w, has one of the 7
values, a state of energy E may absorb an energy quantum
fiw, and still be in the same energy state as before.

E. The three-dimensional lattice world

The energy eigenvalues of an electron moving in a lattice
world of three dimensions are obtained by a straightforward
generalization of the approach in Sec. IV A. This consists of
introducing a discrete Laplacian:

AZ+AZ+AZ

where A? operates only on the x variable, etc. This finite
difference operator defines a preferred reference frame and
can be expressed only in Cartesian coordinates. Let us as-
sume the eigenfunction U(x,y,z) to be factorized as
u(x)u,(y)u,(z), where u,=w (x)exp(ik,x) and
wi(x)=w(x+a), and similarly for y and z. Then the en-
ergy eigenvalues of the stationary Klein—Gordon equation
become

E= t[mzc4+2(ch/a)2{(1 —cos k.a)+(1—cos k,a)
+(1—cos k,a)}]"2. (32)

The energy has a maximum absolute value, and the astonish-
ing results from before still hold when each of the wave
vector components k,, k,, k, assume the particular values
encountered in the one-dimensional case. It may be pointed
out that the introduction of a discrete Laplacian implies lack
of space isotropy because it is not invariant under continuous
rotation. The anisotropy is the only feature which is peculiar
to the three-dimensional case.
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V. IMPACT OF SOLID STATE THEORY

In 1930, Heisenberg was occupied with the problems of
quantum electrodynamics and was just beginning to think
about the mysterious atomic nucleus and the (almost equally
mysterious) cosmic radiation. But in addition to these
branches of frontier theoretical physics he also cultivated an
interest in the application of quantum mechanics to solid
state physics. Under Heisenberg’s leadership, the institute in
Leipzig quickly became a center in this area which was pio-
neered in particular by two of Heisenberg s first students,
Felix Bloch and Rudolf Peierls.'”> Heisenberg’s expert
knowledge of the new quantum mechanical theory of metals
served as an inspiration for his solution of the lattice world
problem.

The foundation of the quantum theory of electrons in lat-
tices was laid by Bloch in his thesis of 1928, but it was the
subsequent work of Peierls that proved most important to
Heisenberg in his speculations about a lattice world. In a
paper of 1929, Peierls investigated, on Heisenberg’s sugges-
tion, the so-called anomalous or “positive” Hall effect in
which a current in some metals is influenced by the magnetic
field as if the conduction carriers were positively charged.'®
He studied the energy function E(k), where #ik is the crystal
momentum, and found that for electrons in the upper part of
the band E (k) will be negatively curved. As he realized, this
corresponds to a group velocity that decreases with the mo-
mentum, contrary to the behavior of free electrons. Peierls
later recalled his work as follows:!*

[1] first had to convince myself ... that the mean velocity of

the electron was given by dE/dk, and therefore different

from that for a free electron of the same k, if the energy
function E(k) was different. It was obvious, in particular,
that in Bloch’s tight-binding model the energy would flat-
ten off near the band edge, so that the current would there
go to zero. Thus, for an electron near the band edge an
electric field could cause a decrease, rather than an in-
crease, in the velocity in the field direction.
In Peierls’ work the concepts of effective mass and holes
were not introduced explicitly, but they were there implicitly.
In the early part of 1930 specialists in the area recognized
that unfilled states near the top of an otherwise filled band
behaved as they were positively charged electrons (with
positive mass). The idea of an effective mass first appeared
in print (under the name “apparent mass ’) in a paper by
Léon Brillouin of the summer of 1930," and one year later
Heisenberg explicitly introduced the concept of solid state
holes by means of quantum mechanics. He concluded that
“the holes move exactly like electrons with posmve charge
under the influence of a disturbing external field.” 'S

Also Peierls’ theory of metal lattices, worked out after he
had become Pauli s assistant in Zurich, inspired Heisenberg,
In this work,!” Peierls considered the transition of an electron
from one energy state to another with the simultaneous emis-
sion or absorption of a phonon. He showed that in general
the total “momentum” 37k, i.e., the sum of the phonon’s
momentum and the electron’s quasimomentum—will differ
from the total final momentum by a reciprocal lattice vector
(times %). This effect, a result of the periodic factor in the
general form of the energy eigenfunctions, is associated with
the so-called Umklapp process introduced by Peierls in 1929,

As is evident from his letter to Bohr, and from our tech-
nical interpretation of it, Heisenberg considered his lattice
world in analogy with the very recent knowledge obtained
about the behavior of electrons in metals. In particular, he
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used Peierls’ theory as a tool in explaining how electrons
could metamorphose into protons for certain values of the
wave number. Insofar as Heisenberg’s idea of a lattice world
belongs to elementary particle physics, this was the first time
that methods from solid state physics were transferred to the
apparently very different field of fundamental particles. It is
no accident that this first case of theory transfer took place in
the Leipzig institute, where the conditions were ideal for
cross-disciplinary work. As Bloch noticed many years later:
“There was so much interplay between all the physicists ...
that as soon as somebody had an idea, another one took it u
and put it in a different form and used it somewhere else.”

The interplay also manifested itself in quantum electrody-
namics being applied to solid state theory at an early stage.
Thus, in 1930 Igor Tamm applied the new Heisenberg—Pauli
theory in a study of scattering of light in crystals. It was in
this work that quanta of elastic oscillations—phonons—were
first introduced.’ (The name “phonon” was only coined two
years later, by Yakov Frenkel.)

VI. RESPONSES TO THE LATTICE WORLD

Heisenberg’s theory of a lattice world was as radical as it
was ambitious. For a brief period he believed to be on his
way to construct a unitary theory of electrons and protons
based on his notion of a fundamental length, a theory which
aspired to the same high goals that motivated Dirac in his
contemporary theory of holes. It is remarkable that Heisen-
berg was willing to seriously entertain a theory that deviated
so drastically from established physics with regard to funda-
mental principles such as space isotropy, relativistic invari-
ance, and conservation of energy, momentum, and charge.

When Heisenberg wrote to Copenhagen about his ideas,
Bohr was well acquainted with the general framework of
Heisenberg’s idea, the hypothesis of a smallest length. In
October 1929, Nevill Mott offered him “a proof that you
cannot measure the position of a particle to more than a
certain degree of accuracy,” which Mott found to be h/mc.*
However, Bohr judged Mott’s argument to be invalid if rela-
tivity was taken into account. With regard to the idea of an
absolute uncertainty in position, as proposed by Flint and
Richardson, and now also by Mott, Bohr wrote: “To my
view all such limitations would interfere with the beauty and
consistency of the theory [of relativity] to far great an extent.
The only limitations in the relativistic theory which I think
possible are those connected with the problem of the consti-
tution of the electron.”?! One week before the beginning of
the 1930 Easter conference, Bohr returned to the subject,
now with a very different view:*?

I have in these days been thinking intensely over the

whole problem of the limits of observation. You remember

that I could not agree in your arguments for an absolute
limit as regards space determination of electrons as that
proposed by Richardson. Although I still think that my
arguments were correct, I have revised my attitude to-
wards the matter and think now that very general argu-
ments can be given in favour of such a limitation of space

determinations, and that this very point is of essential im-

portance as regards obtaining a consistency in the apparent

chaos of relativity quantum mechanics.
The change in Bohr’s attitude may have been influenced by
his correspondence with Heisenberg. It shows, at any rate,
that Bohr was fully prepared to accept the idea of an absolute
uncertainty in position (although not, necessarily, the related
idea of a smallest length).
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Although in general sympathy with Heisenberg’s ap-
proach, Bohr did not share his enthusiasm. After having dis-
cussed the letter of March 10 with Oskar Klein, he decided
that the lattice world was not the answer to the troubles of
quantum theory. In a letter to Heisenberg, Bohr admitted
“the beauty in the idea of connecting so inviolably the ex-
istence of the electron and proton,” but objected that Heisen-
berg’s view was difficult to reconcile with correspondence
considerations. The possible violation of energy and momen-
tum conservation in Heisenberg’s lattice world was not a
shocking feature to Bohr, who himself argued for such vio-
lation in the case of beta decay,” but he considered noncon-
servation of electrical charge to be much more problematical.
Pauli, who was opposed to all such ideas, wrote to Klein in
Copenhagen in March 1930. Referring to the speculations of
energy nonconservation, he stated that Bohr had recently
found “a powerful ally” in Heisenberg—probably a refer-
ence the lattice world theory.?*

Bohr saw Heisenberg’s new idea as belonging to the same
category as Dirac’s hypothesis of holes and believed that it
could be criticized in the same way. According to Bohr,
“conceptions of charge and radiation must be founded di-
rectly on classical electrodynamics,” and this made him
doubt the validity of Heisenberg’s smallest length. “I am not
even sure,”” he wrote, “that the quantity 2/M ¢ can always be
considered the absolute limit of the application of spatial
dimensions in connection with classical theories. Although
this quantity, according to classical electrodynamics, is just
the electron’s “self-radius,” then the very relativity contrac-
tion seems to indicate the possibility that, under some cir-
cumstances, one can attach a well-defined meaning to a more
exact determination of the position at least in a single
direction.”” To make his position clear, Bohr enclosed in his
letter to Heisenberg a copy of an unpublished manuscript
from the spring of 1929 in which he argued for violation of
energy conservation in beta decay processes.® He also en-
closed a copy of a letter to Dirac, an early reply to Dirac’s
idea of protons as holes in a “sea” of negative-energy elec-
trons. In this letter, Bohr made it clear that his willingness to
abandon energy conservation did not extend to charge con-
servation. As he wrote to Dirac (and Heisenberg):27

In the fact that the total charge of the nucleus can be

measured before and after the B-ray disintegration and that

the results are in conformity with conservation of electric-
ity I see a support for upholding the conservation of the
elementary charges even at the risk of abandoning the con-
servation of energy, and I do not quite understand your
reasons for taking the opposite view. Of course, I do not
wish to advocate any of the scepsis of old and new as to
the strict conservation of enmergy in ordinary quantum
theory.
A few days later, Heisenberg acknowledged Bohr’s objec-
tions and admitted that the lattice world idea was probably
not tenable: “I understand quite well-your objections against
my attempt with the finite space cells, and I agree con%gletely
with you that this line of attack is much too crude.”

During the Easter conference at Bohr’s institute, held
April 815, the lattice idea was discussed among the partici-
pants who included Heisenberg, Peierls, .Bloch, Landau,
Gamow, Méller, Rice, and others. Tatiana Ehrenfest, who
was also at the conference, described to her husband, Paul
Ehrenfest, what the situation in quantum physics looked like
from Copenhagen:?

Tanitschka was in Copenhagen for the Bohr conference
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and has sent me a comprehensive and good account of it....

All attempts of quantizing the electromagnetic fields have

got stuck in the mud (infinite mass of the point electron,

Dirac difficulties). It seems that Dirac’s “hole physics”

has not at all Bohr’s sympathy (but of course he is, as

usual, a polite man). Heisenberg cut capers with a “granu-
lated ether” (the grain size of which is of course not rela-
tivistic invariant), but, if possible (!), he believes in the
madness even less than the others.
At that time, when the lattice world was only about one
month old, Heisenberg seems to have stopped regarding it as
a possible theory of the real world and merely to have dis-
cussed it as an interesting academic question.

The possibility of solving the troubles of quantum theory
by introducing a discrete space time was among the topics
discussed at the All-Union Physical Congress held in Odessa
in August 1930. Inspired by the attempts of Heisenberg and
of Iwanenko and Ambarzumian, the young Soviet physicist
Matvei Bronstein took up the idea of a lattice world. He
discussed “quantization of space” with other physicists at
the Odessa congress (including Pauli, Peierls, Tamm, and
Frenkel) and tried to circumvent some of the fundamental
problems that had forced Heisenberg to abandon the lattice
world approach.®® However, Bronstein’s efforts to breathe
new life into the idea failed. Pauli remained unconvinced and
declared to Bronstein that “Those who are maklng holes in
continuous space should mind where they step.”

VII. THE LATTICE WORLD AFTER 1930

In spite of its brief life, Heisenberg’s theory sketch of
March 1930 was not without implications. For one thing, the
failure forced Heisenberg to change his research program
and admit that, for the time being, the study of high-energy
particles was more likely to secure progress in quantum elec-
trodynamics. This led him to focus on cosmic rays and, until
1932, to abandon the atomic nucleus as a hopeless case.”

A brief comment on Heisenberg’s lattice world as an early
nuclear model may be appropriate at this time. We have not
been able to justify his claim that “in order to build up wave
packets of nuclear dimensions, only waves close to the maxi-
mum of the £ curves can be used.” The reasons are the
following. Heisenberg must have considered a three-
dimensional packet, and let us assume that it is expressed as
the product of three Gaussians, G(x)G(y)G(z). We can give
it whatever dimensions we like, and, the Fourier transform
still being a Gaussian, the density of component waves in
each wave vector component space is maximum near zero.
Therefore, Helsenberg s statement can be true only for par-
ticular cases, not in general. >

All the same, from a historical point of view we must just
accept Heisenberg’s claim, which leads to an electron-free
nucleus. About 1930 it was realized that somehow electrons
“ought” not to be in the nucleus and that their presence
caused all sorts of problems. However, in spite of much
speculation no viable alternative to the proton—electron
model emerged until the neutron was discovered.>* In
Heisenberg’s remarkable picture of the nucleus there are no
electrons, which are replaced by the strange heavy photons
playing a role not unlike the later neutrons. The expulsion of
nuclear electrons was an advantage, but of course the alter-
native was highly hypothet1cal and posed many new ques-
tions (such as the origin of beta electrons).

Interestingly, at the same time as Heisenberg developed
his lattice world idea, Ambarzumian and Iwanenko at-
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tempted to apply Dirac’s hole theory to explain beta pro-
cesses. They suggested that “within the nucleus, the elec-
trons lose, in a certain sense, their individuality ... in the
same way as photons [when absorbed in an atom].”* Also
George Gamow, then in Cambridge, tried to make use of
Dirac’s theory in his attempts to understand the nucleus. In a
long letter to Bohr of February 25, he admitted his failure
and concluded that the atomic nucleus was as frustrating a
problem as ever. “This is all rather bad,” he wrote, “and
Dirac is also very sorry about it.”

It is tempting to relate Heisenberg’s 1930 lattice world to
his famous nuclear theory of 1932 in which the recently dis-
covered neutron was first incorporated. After all, as far as
mass and charge are concerned the heavy photons are sug-
gestively like neutrons. However, not only is there no docu-
mentary evidence for such a generic relationship, but at first
(in 1932) Heisenberg conceived the neutron as a proton—
electron composite and not an elementary particle. And yet,
as suggested by Joan Bromberg, there may have been a
connection.’” Although Heisenberg’s attempt to construct a
nuclear model of protons and neutral particles failed in 1930,
it can hardly have left his mind completely. The attempt
indicates that he was mentally prepared for the neutron as a
nuclear constituent when the opportunity came with Chad-
wick’s discovery two years later. One may assume that
Heisenberg, as a result of his earlier attempt, was more re-
ceptive to the neutron than most physicists. In this connec-
tion it may also be relevant to recall that the other pioneer of
the proton—neutron model, Iwanenko, had himself suggested
a lattice world and was familiar with Heisenberg’s idea. As
Iwanenko, together with Ambarzumian, had likened nuclear
electrons with photons in 1930, so he argued in 1932 that

“the electrons in nuclei are really quite analogous to the
absorbed photons.”

Whatever the influence on nuclear theory, Heisenberg did
not forget about his early attempt, and in 193638 the small-
est length reappeared in a version that to some extent incor-
porated elements of his idea of 1930. The aim was again to
formulate a divergence-free quantum electrodynamics, which
he attempted to do in 1936 by using \/j_“, with f=g/fic the
Fermi constant of weak interactions, as a critical length.>
After this idea proved untenable, Heisenberg formulated two
years later a theory of a smallest length based on the Yukawa
meson theory. In the theory of 1938, the smallest length was
given by #/uc where u is the mass of the Yukawa meson.*
Although the high hopes Heisenberg placed on his new
theory never materialized, it played an important role in his
thinking in the late 1930s and elements of it were incorpo-
rated in the S-matrix theory that Heisenberg developed dur-
ing the war. The continuity in Heisenberg’s thoughts between
1930 and 1938 was centered around the utility of a smallest
length.

After 1945, many physicists attempted to complete
Heisenberg’s program of establishing divergence-free (}uan-
tum field theories based on lattice space time ideas.*
though much of this work was close to what Heisenberg had
done in the 1930s, the new generation of physicists seems
not to have been familiar with his theories of a smallest
length to which they rarely referred. And it was of course
ignorant of his 1930 lattice world which contained the germs
of many of the postwar theories of discrete space time.
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VIII. CONCLUSIONS

In Heisenberg’s lattice world of 1930 we see the conflu-
ence of several ideas and approaches. The immediate prob-
lem was the electron’s infinite self-energy according to quan-
tum electrodynamics which Heisenberg, in accordance with
many of his colleagues, conceived as connected with the
problems of understanding the atomic nucleus. As it was
only glimpsed at the time, these problems were rooted in the
shared belief in nuclear electrons (however unwelcome they
were), which again related to the difficulty of explaining the
continuous beta spectrum. In Heisenberg’s attack on this
complex of problems he used methods from the new
quantum-mechanical theory of metals, applied to a model of
space divided into smallest cells. This model was probably
inspired by current speculations of a discrete space time and
the existence of minimal extensions or uncertainties in space.

It may seem confusing with these different problems and
approaches, but the confusion is largely artificial, a result of
our natural attempt to separate the problems in clean, distin-
guishable compartments. However, about 1930 such com-
partmentalization made little sense, cf. with Bloch’s recollec-
tion quoted above. To the physicists of the time, including
Heisenberg, all the problems and attempts at solution were
thoroughly interconnected—so no wonder that the historian
of physics is confronted with a situation that appears confus-
ing and difficult to separate in the “elements” the analyst
might want to have.

Heisenberg’s aborted theory reflected a situation in quan-
tum physics that made many leading physicists believe that
drastic departures from ordinary physics were needed in or-
der to overcome the difficulties. The lattice world was only
one of the revolutionary approaches of the period, which also
witnessed Bohr’s idea of energy nonconservation, Dirac’s
theory of holes, and Pauli’s theory of neutrinos. From this
point of view, Heisenberg’s radical theory was quite repre-
sentative of the revolutionary attitude favored by many
physicists.

Heisenberg did not accept Dirac’s identification of protons
with holes (i.e., antielectrons), but in some respects his lat-
tice world expressed the same aspirations that characterized
Dirac’s hole theory. They were both led to a unitary view—
“the dream of philosophers” according to Dirac—in which
the proton and the electron were not independent particles
but manifestations of the same fundamental particle or field.
This was a feature that Heisenberg noticed with satisfaction,
but it was less important to him than it was for Dirac. The
British theoretician was deeply committed to the unitary
view which acted as a strong motive for his proton-cum-
antielectron hypothesis.42 Heisenberg, on the other hand,
seems merely to have considered it an unexpected extra bo-
nus of a theory that he found attractive primarily because it
avoided the infinite self-energy of the electron and promised
a better understanding of the atomic nucleus. The different
emotional commitments to the unitary view resulted in dif-
ferent responses when the two theories were shown to be
untenable: Dirac kept to his theory as long as possible and
when he left it (in order to replace it with his hypothesis of
positive electrons) he regretted that he was forced to admit
the separate existence of electrons and protons as a contin-
gent fact. Heisenberg just shelved his lattice world and went
on to other work.

Finally, we call attention to the theory transfer from solid
state to particle physics. This kind of transfer, where methods
from a less fundamental branch of physics, are used in a
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more fundamental one (and vice versa), was later applied by
Lev Landau and, in particular, Kenneth Wilson. The impor-
tant work of Wilson, for which he was awarded the Nobel
Prize in 1982, brought renormalization group ideas into solid
state physics,” and in its further development it led to the
first lattice gauge theories.* It is interesting that these mod-
ern theories, dating back to 1974, have elements in common
with Heisenberg’s old lattice world, if only in terminology.
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